http://www.stockton-press.co.uk/bip

SPECIAL REPORT

Ser^{203} as well as Ser^{204} and Ser^{207} in fifth transmembrane domain of the human β_2 -adrenoceptor contributes to agonist binding and receptor activation

¹Takayuki Sato, ^{1,2}Hiroyuki Kobayashi, ¹Taku Nagao & *,¹Hitoshi Kurose

¹Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and ²Drug Discovery Research Laboratory, 2-2-50 Kawagishi, Toda-shi, Saitama 335-8505, Japan

We examined the contribution of Ser^{203} of the human β_2 -adrenoceptor (β_2 -AR) to the interaction with isoprenaline. The affinity of (—)-isoprenaline was reduced by substitution of an alanine for Ser^{203} , as well as for Ser^{204} and Ser^{207} . An (—)-isoprenaline derivative with only one hydroxyl group, at the *meta*-position, showed reduced affinity for wild-type β_2 -AR and Ser^{207} -AR and even lower affinities for Ser^{203} -AR and Ser^{204} -AR. By contrast, an (—)-isoprenaline derivative with only a *para*-hydroxyl group showed reduced affinity for wild-type β_2 -AR but the serine to alanine mutations did not cause further decreases. The EC_{50} value for cyclic AMP generation in response to (—)-isoprenaline was increased, by about 120 fold, for each alanine-substituted β_2 -AR mutant. These results suggest that Ser^{203} of the human β_2 -AR is important for both ligand binding and receptor activation.

Keywords: β_2 -adrenoceptor; catechol hydroxyl group; (-)-isoprenaline; serine residue; Ser²⁰³

Abbreviation: AR, adrenoceptor

Introduction The agonist and antagonist binding domains of the human β_2 -adrenoceptor (β_2 -AR) are thought to reside within the transmembrane domains (Dixon et al., 1987). It has been suggested that the protonated amines of β_2 -AR agonists and antagonists interact with Asp¹¹³ in the third transmembrane domain of the receptor (Strader et al., 1987). Strader et al. (1989) reported that Ser²⁰⁴ and Ser²⁰⁷ in the fifth transmembrane domain of β_2 -AR serve as hydrogen bond donors or acceptors in the interaction with the catechol moiety of each agonist. They proposed that the meta- and parahydroxyl groups of (-)-isoprenaline interact with Ser²⁰⁴ and Ser²⁰⁷, respectively. However, there is another serine (Ser²⁰³) in the fifth transmembrane domain. Strader et al. (1989) did not detect the expression in transfected cells of a β_2 -AR mutant in which Ser²⁰³ was replaced by an alanine, so they suggested that Ser²⁰³ is necessary for proper folding of β_2 -AR.

All catecholamine receptors contain two or three serines in the fifth transmembrane domain (Figure 1). It is thought that each of the hydroxyl groups of a catecholamine interacts with one of the receptor's serines in a manner similar to the interaction between Ser²⁰⁴ and Ser²⁰⁷ of human β_2 -AR and isoprenaline. However, rat α_{1A} -AR lacks a serine at the position homologous to Ser²⁰⁴ of human β_2 -AR. Hwa & Perez (1996) reported that Ser¹⁸⁸ of rat α_{1A} -AR is homologous to Ser²⁰³ of human β_2 -AR and that it interacts with the *meta*hydroxyl group of adrenaline. The hamster α_{1B} -AR has three serines (Ser²⁰⁷, Ser²⁰⁸ and Ser²¹¹) and Cavalli et al. (1996) reported that a substitution mutation of Ser²⁰⁷, which is homologous to Ser²⁰³ of human β_2 -AR, decreases the affinity of agonists; they suggested that both Ser²⁰⁷ and Ser²⁰⁸ of hamster α_{1B} -AR interact with the hydroxyl group in the *meta*-position. The human D₁ dopamine receptor also has three serines, which are homologous to Ser²⁰³, Ser²⁰⁴ and Ser²⁰⁷ of human β_2 -AR, Here, we report the successful *in vitro* expression of a human β_2 -AR mutant in which Ser²⁰³ was replaced by an alanine. We examined the interactions of this mutant with (—)-isoprenaline and its derivatives.

Methods The plasmid pBC- β_2 , which encodes for the human β_2 -AR, was kindly provided by Dr R.J. Lefkowitz of Duke University (NC, U.S.A.). The plasmid pEF-BOS was provided by Dr S. Nagata of Osaka University (Osaka, Japan) (Mizushima & Nagata 1990). (—)-Isoprenaline derivatives

rat	α_{1A}	183	GYVLF	SALGS	FY	194
hamster	$\alpha_{\scriptscriptstyle 1B}$	202	FYALF	SSLGS	FY	213
human				SCIGS		
human	β_2	198	AYAIA	SS IVS 203204 IVS	FY	209
human	D_1	193	TYAIS	SSVIS	FY	204
rat	D_2	188	AFVVY	SSIVS	FY	199

Figure 1 Alignment of the fifth transmembrane domains of various catecholamine receptors.

and each one is critical for ligand binding and receptor activation (Pollock *et al.*, 1992). Similarly, the rat D_2 dopamine receptor has three serines (Ser¹⁹³, Ser¹⁹⁴ and Ser¹⁹⁷) which are homologous to the serines of human β_2 -AR, and all three are necessary for a maximal cyclic AMP response to a partial agonist (Cox *et al.*, 1992). Together, these findings indicate that the serines of various catecholamine receptors that are homologous to Ser²⁰³ of human β_2 -AR play important roles in ligand binding and receptor activation.

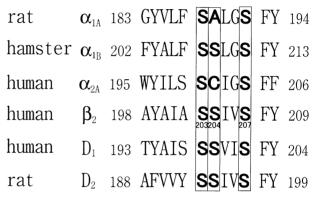
^{*}Author for correspondence; kurose@mol.f.u-tokyo.ac.jp

Table 1 Binding characteristics of the wild type, S203A-, S204A- and S207A- β_2 -adrenoceptors

	$[^{125}I]$ -C	YP	$K_i (\mu M)$			
	$B_{max} \text{ (pmol mg}^{-1}\text{)}$	K_{D} (pm)	(-)-isoprenaline	meta-hydroxyl ISO	para-hydroxyl ISO	
wild type	4.58 ± 0.42	24.4 ± 4.1	0.21 ± 0.05	$2.2 \pm 0.5*$	$3.4 \pm 0.2*$	
S203A-	$1.17 \pm 0.07 \dagger$	46.1 ± 10.8	2.9 ± 0.7	$8.3 \pm 1.3*$ †	2.4 ± 0.1	
S204A-	$2.89 \pm 0.34 \dagger$	17.9 ± 0.8	6.9 ± 0.3	$14.8 \pm 1.6 * \dagger$	5.6 ± 1.1	
S207A-	$2.62 \pm 0.11 \dagger$	20.2 ± 1.2	2.3 ± 0.5	1.4 ± 0.3	2.5 ± 0.6	

The wild-type and alanine-substituted mutants were expressed in COS-7 cells, and binding characteristics were determined. The dissociation constant (K_D) and maximal binding activity (B_{max}) of $[^{125}I]$ -iodocyanopindolol $([^{125}I]$ -CYP) and K_i values of (-)-isoprenaline and its derivatives with one hydroxyl group at *meta*- (meta-hydroxyl ISO) or *para*-positions (para-hydroxyl ISO) were calculated with the Prism software package. The data are shown as means \pm s.e.mean from 3-4 separate experiments. Statistical significance was assessed by Dunnett's test: *<0.01, different from (-)-isoprenaline; \dagger <0.01, different from the wild-type β_2 -adrenoceptor.

were synthesized at the Drug Discovery Research Laboratory by Tanabe Seiyaku (Saitama, Japan). [125I]iodocyanopindolol ([125I]CYP) (2200 Ci mmol⁻¹), [3H]-adenine (24.0–27.0 Ci mmol⁻¹) and [14C]-cAMP (20.0–50.1 mCi mmol⁻¹) were purchased from DuPont-New England Nuclear Research (Boston, MA, U.S.A.). Lipofectamine and cell culture reagents were from Life Technologies, Inc. (Rockville, MD, U.S.A.).


The construct of the β_2 -AR mutants with alanine substitutions for Ser²⁰⁴ or Ser²⁰⁷, S204A- β_2 -AR and S207A- β_2 AR, has been described elsewhere (Kikkawa *et al.*, 1997a). Alanine substitution of Ser²⁰³ was made by Quick change method according to manufacturer's instruction (Stratagene, La Jolla, CA, U.S.A.). S203A- β_2 -AR was inserted into pEF-BOS due to low expression when the pCMV5 vector was used.

The transfection procedure, membrane preparation, receptor binding assays, and cyclic AMP accumulation assays were performed as described previously (Kikkawa *et al.*, 1997b).

The results are expressed as the mean \pm s.e.mean for n determinations. Statistical significance was assessed by ANOVA for multiple comparisons. ANOVA post hoc comparisons were made using Dunnett's test.

Results First, we determined the maximal binding activity (B_{max}) and dissociation constant (K_D) for the wild-type and mutated β_2 -ARs (Table 1). The expression levels of the mutants in transfected cells were significantly lower than that of the wild-type receptor, but were much higher than that of endogenous β -AR in COS-7 cells (~ 10 fmol mg⁻¹) and were sufficient to study the binding characteristics of the mutants. As the K_D values of the mutants for [125 I]-CYP were not significantly different from that of the wild-type receptor, we concluded that the substitution of alanine for Ser 203 , Ser 204 or Ser 207 did not cause a global change in the β_2 -AR structure.

The affinity of (–)-isoprenaline for β_2 -AR was reduced 10 – 30 fold by the serine to alanine substitutions: by about 30 fold for S204A- β_2 -AR, by about 10 fold for S207A- β_2 -AR and by about 10 fold for S203A- β_2 -AR. To examine the role of each hydroxyl group on the phenyl ring of the ligand in the interactions with the serine residues, (-)-isoprenaline derivatives were synthesized in which the meta- or para-hydroxyl group was changed to hydrogen. The affinities of these two derivatives for the wild-type receptor were about 10 fold lower than that of (-)-isoprenaline (Table 1). However, they showed at most 6 fold lower affinities for the alanine-substituted mutants than for the wild-type receptor. The affinity of the derivative with one hydroxyl group at the meta-position (metahydroxyl ISO in Table 1) for S203A- β_2 -AR and S204A- β_2 -AR, but not S207A- β_2 -AR was significantly reduced compared to the wild-type receptor. By contrast, the affinity of the derivative with one hydroxyl group at the para-position

Figure 2 Effect of mutations of Ser^{203} , Ser^{204} or Ser^{207} of human $β_2$ -AR on isoprenaline-stimulated cyclic AMP generation. The CHO cells were transfected with the wild-type, S203A-, S204A- or S207A- $β_2$ -ARs, labelled with [3 H]-adenine, and stimulated with the indicated concentration of (-) - isoprenaline for 10 min in the presence of 1 mM isobutyl-1-methylxanthine. The EC₅₀ values were calculated with the Prism software package. To compare EC₅₀ values between the mutants, the maximal cyclic AMP generation of each experiment was set as 100%, and the other values were normalized to this value.

(*para*-hydroxyl ISO in Table 1) was not significantly affected by the substitution of alanine for Ser²⁰³, Ser²⁰⁴ or Ser²⁰⁷.

To examine the functional role of the serine residue at position 203 in the activation of β_2 -AR by (—)-isoprenaline, agonist-stimulated cyclic AMP generation was determined in CHO cells. Stimulation of each receptor with (—)-isoprenaline increased the intracellular cyclic AMP content (Figure 2). The EC₅₀ values were 7.92 ± 2.71 nm for the wild-type receptor (n=5), 361 ± 134 nm for S203A- β_2 -AR (n=5, P<0.5 vs wild-type receptor), 1010 ± 120 nm for S204A- β_2 -AR (n=3, P<0.01 vs wild-type receptor) and 430 ± 90 nm for S207A- β_2 -AR (n=4, P<0.05 vs wild-type receptor). These data indicate that Ser²⁰³ plays a role not only in ligand binding but also in receptor activation.

Discussion All catecholamine receptors contain two or three serine residues in the fifth transmembrane domain. It has been reported that the serine residues of these receptors that are homologous to Ser^{203} of β_2 -AR play different roles in ligand binding and receptor activation. Rat α_{1A} -AR has only two serine residues (Ser^{188} and Ser^{192}), which are homologous to Ser^{203} and Ser^{207} of human β_2 -AR, and they interact with the *meta*- and *para*-hydroxyl groups of adrenaline (Hwa & Perez, 1996). In addition, Ser^{188} of rat α_{1A} -AR is essential for receptor activation. Human α_{2A} -AR also has only two serine residues (Ser^{200} and Ser^{204}), which are homologous to Ser^{203} and Ser^{207}

of human β_2 -AR; a mutation of either Ser²⁰⁰ or Ser²⁰⁴ decreases both adrenaline binding and the potency with which adrenaline inhibits cyclic AMP generation (Wang *et al.*, 1991). However, Wang *et al.* (1991) suggested that Ser²⁰⁰ of α_{2A} -AR does not directly participate in adrenaline binding and receptor activation, because mutation of Ser²⁰⁰ did not modify the magnitude of inhibition of cyclic AMP generation by adrenaline derivatives with only one hydroxyl group at either the *meta*-position (phenylephrine) or *para*-position (synephrine). These results suggest that the interactions between the hydroxyl groups of adrenaline and the receptor differs between adrenoceptors.

In the present study substitution of an alanine for either Ser^{203} or Ser^{204} significantly decreased the affinity of the (–)-isoprenaline derivative with one hydroxyl group at the *meta*-position for β_2 -AR, suggesting that the *meta*-hydroxyl group of (–)-isoprenaline interacts with both Ser^{203} and Ser^{204} . Our functional analysis of the S203A-, S204A- and S207A- β_2 -AR mutants indicated that Ser^{203} , as well as Ser^{204} and Ser^{207} , plays an important role not only in ligand binding but also in receptor activation. Cavalli *et al.* (1996) reported that hamster

 α_{1B} -AR has three serine residues in the fifth transmembrane domain, as does human β_2 -AR, and proposed that Ser²⁰⁷ of hamster α_{1B} -AR fulfils two roles by forming hydrogen bonds: it is a donor for the *meta*-hydroxyl group and is an acceptor for the *para*-hydroxyl group. Therefore, the simplest explanation of our data is that the *meta*-hydroxyl group of (–)-isoprenaline interacts with both Ser²⁰³ and Ser²⁰⁴ of human β_2 -AR in a manner that is similar to the interaction between Ser²⁰⁷ of hamster α_{1B} -AR and the *meta*-hydroxyl group.

In conclusion, we have shown that Ser^{203} , as well as Ser^{204} and Ser^{207} , in the fifth transmembrane domain of β_2 -AR is involved in ligand binding and receptor activation. However, the precise interactions between each of the serine residues and the hydroxyl groups of (—)-isoprenaline remain to be determined by further analysis of mutant receptors.

We thank Dr R.J. Lefkowitz and Dr S. Nagata for providing pBC- β_2 and pEF-BOS, respectively.

References

- CAVALLI, A., FANELLI, F., TADDEI, C., DE BENEDETTI, P.G. & COTECCHIA, S. (1996). Amino acids of the α_{1B} -adrenergic receptor involved in agonist binding: differences in docking catecholamine to receptor subtypes. *FEBS Lett.*, **399**, 9–13.
- COX, B.A., HENNINGSEN, R.A., SPANOYANNIS, A., NEVE, R.L. & NEVE, K.A. (1992). Contributions of conserved serine residues to the interactions of ligands with dopamine D₂ receptors. *J. Neurochem.*, **59**, 627-635.
- DIXON, R.A.F., SIGAL, I.S., CANDELORE, M.R., REGISTER, R.B., SCATTERGOOD, W., RANDS, E. & STRADER, C.D. (1987). Structural features required for ligand binding to the β -adrenergic receptor. *EMBO J.*, **6**, 3269–3275.
- HWA, J. & PEREZ, D.M. (1996). The unique nature of the serine interactions for α_1 -adrenergic receptor agonist binding and activation. *J. Biol. Chem.*, **271**, 6322–6327.
- KIKKAWA, H., ISOGAYA, M., NAGAO, T. & KUROSE, H. (1997a). The role of the seventh transmembrane region in high affinity binding of a β_2 -selective agonist TA-2005. *Mol. Pharmacol.*, **53**, 128 134.
- KIKKAWA, H., KUROSE, H., ISOGAYA, M., SATO, Y. & NAGAO, T. (1997b). Differential contribution of two serine residues of wild type and constitutively active β_2 -adrenoceptors to the interaction with β_2 -selective agonists. *Br. J. Pharmacol.*, **121**, 1059–1064.

- MIZUSHIMA, S. & NAGATA, S. (1990). pEF-BOS, a powerful mammalian expression vector. *Nuc. Acid Res.*, **18**, 5322.
- POLLOCK, N.J., MANELLI, A.M., HUTCHINS, C.W., STEFFEY, M.E., MACKENZIE, R.G. & FRAIL, D.E. (1992). Serine mutations in transmembrane V of the dopamine D₁ receptor affect ligand interaction and receptor activation. J. Biol. Chem., 267, 17780 – 17786
- STRADER, C.D., CANDELORE, M.R., HILL, W.S., SIGAL, I.S. & DIXON, R.A. (1989). Identification of two serine residues involved in agonist activation of the β -adrenergic receptor. *J. Biol. Chem.*, **264.** 13572 13578.
- STRADER, C.D., SIGAL, I.S., REGISTER, R.B., CANDELORE, M.R., RANDS, E. & DIXON, R.A. (1987). Identification of residues required for ligand binding to the β-adrenergic receptor. *Proc. Natl. Acad. Sci. U.S.A.*, **84**, 4384–4388.
- WANG, C.D., BUCK, M.A. & FRASER, C.M. (1991). Site-directed mutagenesis of α_{2A} -adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. *Mol. Pharmacol.*, **40**, 168–179.

(Received May 12, 1999 Revised June 22, 1999 Accepted June 30, 1999)